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Motivation

In HEP there are some problems which can be formulated in terms of integral or

differential-integral equations (or systems of such equations).

A well-known problem of this type is QCD evolution of parton distributions inside a

proton which can be described by the Gribov-Lipatov-Altarelli-Parisi (GLAP) equations.

Although there exist various numerical-analysis methods for solving such equations,
using Monte Carlo techniques has certain advantages: it allows not only for solving
the equations but also for generating events in terms of particle flavours and

four-momenta, which is particularly useful for experimental applications.

Monte Carlo algorithms for solving the GLAP equations are based on simulating

Markov chains (random walks).

Particularly useful are the so-called parton-shower algorithms which are the basis of
popular Monte Carlo event generators for the QCD processes, such as PYTHIA,
HERWIG, etc.
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Basics of Markov chains

Let a system have a finite or countable set of possible states S1, .52, ... , and X; be the
state that it is at time ¢. Let’s consider discrete times labelled consicutively with 1,2, .. ..
> X; is a random variable and we may define the conditional probabilities:

P(Xt — Sj|Xt1 — Silath — S’ig)‘ .. ,th — S'Ln)

» The system is a Markov chain if the distribution of X is independent of all previous

states except for its immediate predecessor X;_1, i.e.

P(Xt — Sj‘Xt—l — S

.. ,XQ = Si27X1 = SZ1)
= P(Xy = 55| Xe—1 = 55,_,)
> This can easily be extented to system with continuous states by replacing probabilities

Tg—19°

with density functions.

e Examples of Markov chains (random walks):
Brownian motions, diffusion in gases, “a walk of a drunk sailor”, etc.

> Mathematically, Monte Carlo methods based on Markov chains can be applied to
solving systems of linear equations, integral equations, partial differential equations,

eigenvalue problems, computing the inverse matrix, etc.
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One-dimensional Markovian MC algorithm

1-dimensional forward Markovian walk

» Let the probability of a single forward Markovian step be given by:

p(tltn) = SOt — t,) exp ( _ / ¢<t’>dt'),
/t T pltlt)dt =1, p(tl0) = p(t)

n

> Changing the evolution variable t — T'(t

T(t /¢

simplifies greatly the transition probability:

P(T|T,) = ©(T — T,,) exp(T,, — T, /T P(T|T,) dT = 1.

NB. The above is "the old Monte Carlo recipe” for the Poissonian distribution.
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1-dimensional Markovian algorithm step-by-step

[1] Generate t1 according to p(t1) = p(t1|to = 0)
(@) t1 > tmax: P ftm p(ti|to) = e~ 1™ Retain N = 0; Trash t;. EXIT.
(b) t1 < tmax: PNZl = f;max dt1 p(t1|to). Retain t1. GO tO [2]

[2] Generate to according to p(ta2|t1)
@) t2 > tmax: P = [ p(t2|t1). Retain N = 1, ¢1; Trash t2. EXIT.

tmax

(0) t2 < tmax: Pnz2 = [/ dts p(ta]tr). Retain (t1,t). GO to [3].

[Il —+ 1] Generate tp,41 according to p(tn+1|tn).
@) tni1 > tmax: PNont1 = f;jflx dtni1 p(tas|tn).
Retain N = n, (to,t1,...,tn); Trash tp4+1. EXIT.
(0) tnt1 < tmax: PN>nt1 = f;jflx dtry1 p(tniiltn).
Retain t, 11 and GO tO [Il -+ 2].
[n -+ 2] ... and so on until a successful EXIT.

tmax tmax tmax [©.@)
Py = [ dtip(tilto) [ dtap(taltr) ... [ dtnp(inltn-1) [ dtngip(En+iltn),

tl tn—l tmax

0
% (TmaX)Ne_TmaX «— Poissonian distribution P(Tyax)
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The 1-dimensional Markovian algorithm

» The fully differential distribution:

N
pN(tlv t27 oo 7tN> =€ gmax ¢(t)dt@(tmax o tN) H ¢(tn) @(tn

n=1
N
Py(T1, Ty, ..., Tn) = e~ O(Thax — Tn) || ©(T0 — Th—1).
n=1

IS easily extracted from the integral:

Tmax Tmax Tmax
Py = e Lmax / dT} / dTs - - - / dTn
0 11 Tn-1

tmax tmax tmax
— ¢ o™ ¢<t>dt/ ¢(t1)dt1/ ¢(t2)dt2---/ o(tn)dtn .
0

t1 tN—1

> One could generate randomly N according to Py, and (¢1, t2, . . . ,tN) according to
pn(t1,ta, ..., tN) without the use of the Markovian algorithm.

—> However, Markovian has some advantages, both for physics and Monte Carlo.
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Non-singlet structure function evolution

A 2-dimensional Markovian process for the QED/QCD structure function evolution can be
derived from the non-singlet GLAP evolution equation:

s, [tz a(Q, z)
g P@@ = [ TS Dw/z.Q)

where P(z) is the Altarelli-Parisi splitting function, usually regulated with some IR
regulator e < 1:

P =cp | 2T2 350 z)]

:(1—§)+ 2
—Cp |12 @(1—z—e)+5(1—z)(g+2lne)].

| 1—-=z

» In a more compact notation the evolution equation reads:

0 _ O‘<Q7')

where

O® 0@ = [ dadabc - am)fia)f(a),
)R () ®---® fn(-)(z) = /dzldzg coodznd(z —z122...2n) f1(z1) fa(22) . .. fn(2zn).
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Integral representation

Introducing the following notation:

1
t =1InQ, qs(t):/O g Q%)

v

P(2), ®(t) = / o(t')dt

where

we get

Substituting -
D(z,t) = D(z,t)e *®

we eliminate the non-homogenous term 0®(t) /0t and turn to the integral representation

7

D(z,t) = D(x,tg) +/ dtla(tl)Pe(.) ® D(-,t1)(x),

which can be solved iteratively.

> We have now the explicit Sudakov exponential formfactor for a given IR cut-off €!
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lterative solution

» An iterative solution to the integral evolution equation can be expressed in terms of
a series of 2n-dimensional integrals:

D(z,t) = D(z, 1)
a(ty)

T

Pe(-) ® D(-, o) ()

oz(tl)

T

P()® /tl dts

to

P()® / !ty 40

to

n

zz)/ dzo D(zo,t0) 6(x H Zi)-

1=0

> In real life D(x,t) comes in the convolution with some hard cross section H (x),

hence the §(z — ||, 2;) constraint is absent.

W. Ptaczek INFN and University of Pavia, 18-22 October 2004



Lecture 4: Markovian Monte Carlo 10

Master Formula for structure function evolution

Usually D(x,t) is convoluted with the hard cross section H (x), hence NO §(z — [, 2:):

/de(x,t)H(a:) = /dzOD(zO,to)
X {1+§:1 /t: nldti @(ti—ti_l)/o

» Various paths are possible for the MC implementation:

1=

e “Forward Markovian evolution”: Assumes that H () = 1 or very mild, applies to final
state radiation (FSR) in QED and QCD; see PYTHIA and HERWIG.

“Backward Markovian evolution” of Sjdstrand: requires prior knowledge of D(x, 1),
most popular in QCD MC, e.g. PYTHIA, HERWIG.

“Constrained Markovian evolution”: forward evolution but with a constraint imposed by

H (x), does not require prior knowledge of D(x,t); S. Jadach et al., in progress.

“Non-Markovian algorithm”: the evolution equation (raw splitting kernels) used as the

only source for constructing D-distributions; S. Jadach et al., in progress.
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Derivation of the 2-dimensional Markovian algorithm

Define a normalized differential conditional probability for a single Markovian forward step:

dP,>i(ti, zi|ti—1) = p(ti, zi|ti—1)dt;dz;, /dPnZi(tiaziltz’—l) = 1.

It is identified easily as:

p(tz‘, zi|ti_1)dtidzz- = @(tz — ti_1> €_cb(ti)+cb(t'_ ' ( >P (ZZ>dZZ

i)
)dz

» Markovian interpretation requires adding one extra integration variable ty 1,

= @(Tz — Ti—l) —litTia dT; dz;.

P(z
(2

fa(t)P

representing a “trashed variable”, i.e. falling beyond the limit ¢, 5x.

> It is “fabricated” using the identity:
/ dt/ dz p(t', z|t, )—eT/
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Master Formula for 2-dimensional Markovian parton-shower algorithm
“Markovianization” done by adding the “artificial” extra integration over ¢,, 1 leads us to:

D(x,t) = /dzOD(ZO,tO){ / dt1dz1 p(t1,21|0) d(x — 2¢)

t1>0

+ Z /Hp(tz‘, zilti—1)dtidz; /dtn+1dz1 P(tni1, Znitltn) 5(:,; _

which is now directly applicable in the Markovian algorithm.

In the 2-dimensional Markovian Monte Carlo algorithm:

e At each step a new pair (ti, zz) is generated according to the conditional probability
density p(tz‘, Z; |ti_1>dtid2’z‘.
e The process continues until the “overflow” t,,4+1 > tmax = t happensforn 4+ 1 = 1.
e The accepted MC eventis [n, (t1,21), (t2,22), ..., (tn, 2n)].
The pair (t,1.1, 2n41) is trashed!
e In case of the “overflow” at the first step: n = 0 and x = 2.
» The claimis that this x = H?:o z; will be distributed exactly (up to a Monte Carlo

statistical error) according to the desired distribution D(x, t).
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Markovian path for ISR

The Markovian path in the (z, Q)
phase space related to the calcu-
lation of D(x, Q) (upper plot) and

the ISR-type kinematic tree (lower

plot).

evolution -->

O L L TR

Q

1-z;  ky,7z,(1-z,) z,..2,,(1-z) z,..2, 1(1-2p)

5 5 ‘52122..1' 5122_“2”:)( »(@
Q Q=Q |

W. Ptaczek INFN and University of Pavia, 18-22 October 2004




Lecture 4: Markovian Monte Carlo 14

Multiplicity
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Numerical results for the QED ISR parton shower at 1TeV: (a) distributions of the evolution variables
ti,i =0,1,2,3; (b) photon multiplicity distribution; (c) distribution D(x, Q) of electron, histogram

Is MC, smooth curve is analytical results from the literature. (d) The ratio of the analytical and MC.,
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Multicomponent Markovian algorithm

» For the singlet structure functions we have a system of coupled evolution equations:

9 Delt,z) / 2sh2) (t, f)

ot T z

_ZO‘S Pk:, )@ Dj(t,-) =Y Prlt

where t = In () and the indices j, k runs over all partons.

> The generalized Altarelli-Parisi kernel can be written as:
Prj(t,z) = —=P2,(€) O 6(1 — 2) + '.P%(t, 2)O(1l —z—¢).

» The iterative solution now reads

oo n t 1
Dy(t,z) = e~ 6t Dy (g, 2) + 3 > 11 [/ dt; O(t; — ti_l)/ dzi]
n=1 kq,... ,kp_q i=1 -7 10 0

1k

_CI)k(t tn)/ dﬂjo H [ (]? (tz,ZZ) @ki—l(ti,ti—l)] Dko(to’xo)é(aj—xo H Zi))

=1

where the Sudakov form-factor exponent: D (t,ty) = f; dt' P2, (e).
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Weighted Markovian algorithm

» The properly normalized Markovian transition probability is now:

w(ts, i, kilti—1, xic1,kic1) = Ot — tiz1) :P(I?iki_l(tiaxi/xi—l) e_Tki—l(ti’ti—l),

oo 1
/ dti / dZZ E w(ti,azi, ki]ti_l,xi_l, ki—l) = 1,
t'i—l 0 k’"L

t 1—e
©
T (t, to) =/ / dz Yy P51, 2).
to €’ j
> However, since in general T} (t,tg) # P (t,tg), using the above transition
probability in the Makovian algorithm does not reproduce our iterative formula!
— This can be corrected by weighting each event with the factor:

n
w = eAkn (tatn) H eAki_l(tiati—l) :

1=1

where

' 1
Ag(t,to) = Ti(t, to) — Pr(t, o) = / dt’ / dz ZTjk(t',Z)-
t() €’ ]

— Weighted Markovian algorithm
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Master Formula for multicomponent Markovian algorithm

» In order to complete construction of the Markovian solution we have to add (7 + 1)th

“spill-over” variables. This can be accomplished by using the following identity:

o 1
_ eAkn (t,tn) / dtn—|—1 / dzn+1 Z W(tn+1, Ln+1, kn—|—1|tn7 Ln, kn) .
t 0

En+1
» Finally, we obtain the iterative formula for the multicomponent Markovian algorithm:

Dk(t,aj) :6Ak(t’t0) / dtldzlZw(tl,xl,k1|to,xo,k) Dk(to,aj)

t1 >t k1

-+ i /1 dxo / dtn_|_1d2’n_|_1 Z Z ﬁ /t dt;dz;
n=1 0 t; <t

tn41>t knt1 koseooskn_1 =1

A t,tn
X e ko ( )W(tn-l—lyxn—l—lakn—i-l'tn?xn’kn)
n

Ak- (t'at'—l)
=1 Yt kilti—1, i1, kio1)

X 5(33 — X0 H ZZ) Dko (to, 5130).

1=1
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Generation of a single Markovian step

» A single step forward (tq, zq, ko) — (t1, 219, k1) in the primary Markovian
algorithm is generated according to the probability density:
dw(tl, 210, k’l ‘to, o, ]430) = @(tl — to) T?ﬂfo (tl, Zl) 6_Tk’0 (tl’to)dtldzl .

> Methods of generation of the above 3-dimensional distribution can be found from:
1

1 /dtl Z /d21 w(t1, z1z0, k1|to, o, ko)
to

k1 {
1
d(e_Tko(tMo)) Z J d= Tglko(tl’Z/)/ iP(l-?ll-co(tlazl)

dz1
- zj: [ dz’ T?ko (t1,2") [ dz’ Tgﬂﬂo (t1,2")

0

/
/

1
dr(t1) > p(kilt1) /dz1 p(z1lk1,t1).
k1 0

Generation scheme:

e First, generate ¢ according to the density 7(t)

e For the chosen value of t, generate the parton type k according to p(k|t).

e Finally, having the values of t and k, generate the variable z according to p(z|k, t).
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