W-Pair Production With YFSWW/KORALW

WIESŁAW PŁACZEK Jagiellonian University, Cracow, Poland and CERN, Geneva, Switzerland

Outline:

- Introduction.
- WW Physics with YFSWW/KORALW.
- Numerical results.
- Conclusions and outlook.

People:

S. JADACH, W.P., M. SKRZYPEK, B.F.L. WARD, Z. WAS

Papers:

KORALW: Comput. Phys. Commun. 94 (1996) 215;
 Phys. Lett. B372 (1996) 289;
 Comput. Phys. Commun. 119 (1999) 272.
 YFSWW: Phys. Rev. D54 (1996) 5434;
 Phys. Lett. B417 (1998) 326;

Phys. Rev. D61 (2000) 113010;

hep-ph/0007012.

 \Rightarrow EXPERIMENTALLY:

W-pairs observed through 4f final states + radiative photons

$$e^+ + e^- \longrightarrow f_1 + \bar{f}_2 + f_3 + \bar{f}_4 + n\gamma, \ (n = 0, 1, \ldots)$$

 \Rightarrow THEORETICALLY: also LOOP corrections necessary!

• Exclusive Yennie-Frautschi-Suura Exponentiation:

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=1}^{4} \frac{d^{3}q_{j}}{q_{j}^{0}} \left\{ \prod_{i=1}^{n} \frac{d^{3}k_{i}}{k_{i}^{0}} \tilde{S}(\{p\}, \{q\}, k_{i}) \Theta\left(\frac{2k_{i}^{0}}{\sqrt{s}} - \epsilon\right) \right\}$$
$$\times \delta^{(4)} \left(p_{1} + p_{2} - \sum_{j=1}^{4} q_{i} - \sum_{j=1}^{n} k_{i} \right) e^{Y(\{p\}, \{q\}; \epsilon)}$$
$$\times \left[\bar{\beta}_{0}^{(m)}(\{p\}, \{q\}) + \sum_{i=1}^{n} \frac{\bar{\beta}_{1}^{(m)}(\{p\}, \{q\}, k_{i})}{\tilde{S}(\{p\}, \{q\}, k_{i})} + \dots \right],$$

where $\tilde{S}(\{p\}, \{q\}, k)$ — Soft Photon Radiation Factor $Y(\{p\}, \{q\}; \epsilon)$ — YFS FormFactor $\bar{\beta}_n^{(m)}(\ldots)$ — $\mathcal{O}(\alpha^m)$ YFS Residuals for n Real Photons **COMPLICATED !!!**

Introduction

\Rightarrow PROBLEMS :				
$ullet$ ~ 80 Different Cha	innels			
 Complicated Peakir Phase Space 	ng Behaviour in $8+(3n-4)$ Dim.			
• Large Number of Fe	eyman Diagrams			
# of Feynman Gra	aphs/Channel (WW-type, $m_f=0$)			
BORN	9 — 56			
1-LOOP	3,579 — 15,948			
\rightarrow Practical Problems	s – A Few Examples:			
• BORN: e.g. KORAI	_W ($m_f eq 0$)			
Source Code: \sim ().5M Lines \rightarrow \sim 20MB			
Exec. Code: \sim 10	MB			
Compilation Time	: \sim 1h On Fast PC			
• 1-LOOP: Rough Es	stimate – Mupltiply by 100			
Source Code: \sim 50M Lines \rightarrow \sim 2GB				
Exec. Code: \sim 1GB				
Compilation Time:	: \sim 100h On Fast PC			
ightarrow Very Slow Ever	nt Generation! \sim 100 $ imes$ Born			
EFFICIENT A	PPROXIMATIONS NEEDED !			

W. Płaczek

W. Płaczek

6

TWO APPROACHES: a) R. G. Stuart, Nucl. Phys. B498 (1997) 28 and Refs. therein M_i Expanded About Complex Poles (Laurent Series) Corresponding to Unstable Particles (Here: W's) T_i **Untouched by Laurent Expansion!** → LPA: Only Leading-Pole Terms Kept! IMPLEMENTED IN YFSWW: LPA_a \leftarrow RECOMMENDED **b)** Yellow Report CERN 96-01, Vol. 1, p. 79 and Refs. therein^a The Whole Matrix Element \mathcal{M} Expanded About Poles! (Connection to On-Shell WW Production and Decay) → LPA: Only Leading-Pole Terms Kept! IMPLEMENTED IN YFSWW: LPA_b \leftarrow For Tests • NUMERICAL DIFFERENCES : $LPA_a/LPA_b - 1$ Level Several Per Cent Born δ_{ISR} A Few Per Mille $\delta_{WW}^{NL} \leq 0.1\%$ \Rightarrow Born: LPA_a Very Close to CC11 (Min. Gauge-Invariant Set of Feynman Diagrams) ^aSee also: W. Beenakker, F.A. Berends and A.P. Chapovsky, Nucl. Phys. **B548** (1999) 3

$\texttt{YFSWW3-1.14} \leftrightarrow \texttt{KORALW-1.42}$

(CC09/CC10/CC11 Channels)

$\sqrt{s} = 10$	$\sqrt{s} = 161 \text{ GeV}$		$\sigma_{WW} \left[fb ight]$		[%]	δNL [07]
Final state	Program	Born	ISR	Born	ISR	O_{WW} [70]
	YFSWW	156.670(16)	122.832(08)			-1.41(4)
$u \bar{d} \mu^- \bar{\nu}_\mu$	KORALW	156.601(24)	122.836(11)	0.29	0.25	
	(Y-K)/Y	0.04(2)%	0.00(1)%			

$\sqrt{s} = 200 { m GeV}$		$\sigma_{WW} [fb]$		$\delta_{4f} [\%]$		S NL [07]
Final state	Program	Born	ISR	Born	ISR	σ_{WW} [70]
	YFSWW	219.793(16)	204.198 (09)		—	-1.92(4)
$ u_{\mu}\mu^{+}\tau^{-}\bar{\nu}_{\tau} $	KORALW	219.766(26)	204.178(21)	0.041	0.044	
	(Y-K)/Y	0.01(1)%	0.01(1)%			
	YFSWW	659.69(5)	635.81(3)		—	-1.99(4)
$u \bar{d} \mu^- \bar{\nu}_\mu$	KORALW	659.59(8)	635.69(7)	0.073	0.073	
	(Y-K)/Y	0.02(1)%	0.02(1)%			
	YFSWW	1978.37(14)	1978.00(09)			-2.06(4)
$u \bar{d} s \bar{c}$	KORALW	1977.89(25)	1977.64(21)	0.060	0.061	
	(Y-K)/Y	0.02(1)%	0.02(1)%			

$\sqrt{s} = 500 \mathrm{GeV}$		$\sigma_{WW}[fb]$		$\delta_{4f} [\%]$		δNL [07]
Final state	Program	Born	ISR	Born	ISR	O_{WW} [70]
	YFSWW	261.368(23)	292.029(18)			-4.95(4)
$u \bar{d} \mu^- \bar{ u}_\mu$	KORALW	261.348(17)	291.979(19)	-0.51	-0.51	
	(Y-K)/Y	0.01(1)%	0.02(1)%		—	—

 δ^{NL}_{WW} Much Bigger Than δ_{4f} !

W. Płaczek

W. Płaczek

YFSWW3-1.14 ↔ RACOONWW ^{A. Denner, S. Dittmaier,} @ LEP2 Energies

$\sqrt{s}[GeV]$	σ_{WV}	(Y — R)/Y [%]	
	YFSWW3	RACOONWW	
168.000	9.8302(34)	9.8392(49)	-0.09(6)
172.086	12.0988(41)	12.0896(76)	0.08(7)
176.000	13.6360(45)	13.6271(66)	0.07(6)
180.000	14.7791(49)	14.7585(72)	0.14(6)
182.655	15.3610(50)	$15.3684\left(76 ight)$	-0.05(6)
185.000	15.7755(48)	15.7716(78)	0.25(6)
188.628	16.2664(53)	16.2486(111)	0.11(8)
191.583	$16.5680\left(57 ight)$	16.5188(85)	0.30(6)
195.519	16.8409(61)	16.8009(87)	0.24(6)
199.516	17.0167(68)	16.9791(88)	0.22(6)
201.624	17.0755(62)	17.0316(89)	0.26(6)
205.000	17.1279(55)	17.0792(89)	0.28(6)
208.000	17.1507(67)	17.0942(90)	0.33(7)
210.000	17.1467(66)	$17.0858\left(91 ight)$	0.34(7)
215.000	17.0786(70)	17.0378(91)	0.24(7)

Agreement Within 0.4%

FNAL, October 24-28, 2000

W. Płaczek

YFSWW3-1.14: Total WW Cross Section

$\sqrt{a} [C_{o}V]$	$\sigma_{WW} [pb]$		ISR-Born [0%]	Best-ISR [%]	
$\sqrt{s}[Gev]$	Born	ISR	Best	Born ^[70]	Born $[70]$
155.000	0.94585(17)	0.76497(14)	0.75478(35)	-19.12(3)	-1.08(5)
157.000	1.38578(25)	1.10298(19)	1.08686(48)	-20.41(3)	-1.16(5)
159.000	2.30412(40)	1.79141(30)	1.76254(80)	-22.25(3)	-1.25(5)
161.000	4.4138(7)	3.3579(5)	3.2969(14)	-23.92(3)	-1.38(5)
163.000	7.3264(10)	5.6178(7)	5.5219(22)	-23.32(3)	-1.31(4)
165.000	9.7343(11)	7.6385(9)	7.5073(27)	-21.53(3)	-1.35(4)
167.000	11.5788(14)	9.2903(10)	9.1367(31)	-19.76(3)	-1.33(4)
168.000	12.3391(14)	10.0020(11)	9.8302(34)	-18.94(3)	-1.39(4)
170.000	13.6124(15)	11.2392(12)	11.0504(37)	-17.43(3)	-1.39(4)
172.086	14.6717(16)	12.3114(14)	12.0988(41)	-16.09(3)	-1.45(4)
176.000	16.1293(17)	13.8760(15)	13.6360(45)	-13.97(3)	-1.49(4)
180.000	17.1207(18)	15.0325(16)	14.7791 (49)	-12.20(3)	-1.48(4)
182.655	17.5852(19)	15.6190(17)	15.3610(50)	-11.18(3)	-1.47(4)
185.000	17.8981(19)	16.0422(18)	15.7755(48)	-10.37(3)	-1.49(4)
188.628	18.2391(20)	16.5540(18)	16.2664(53)	-9.24(3)	-1.58(4)
191.583	18.4179(20)	16.8649(18)	16.5680(57)	-8.43(3)	-1.61(4)
195.519	18.5466(19)	17.1651(19)	16.8409 (61)	-7.45(3)	-1.75(4)
199.516	18.5828(19)	17.3608(19)	17.0167(68)	-6.58(3)	-1.85(4)
201.624	18.5696(21)	17.4284(19)	17.0755(62)	-6.15(3)	-1.90(4)
205.000	18.5162(21)	17.4968(20)	17.1279(55)	-5.51(3)	-1.99(4)
208.000	18.4399(21)	17.5216(20)	17.1507(67)	-4.98(3)	-2.01(4)
210.000	18.3767(21)	17.5219(20)	17.1467(66)	-4.65(2)	-2.04(4)
215.000	18.1833(21)	17.4773(20)	17.0786(70)	-3.88(2)	-2.19(4)
250	16.2477(16)	16.2293(14)	15.7952(44)	-0.11(2)	-2.67(3)
350	11.3812(12)	11.9325(12)	11.5255(39)	4.84(2)	-3.58(4)
500	7.3621(8)	7.9823(9)	7.6324(30)	8.42(2)	-4.75(4)
750	4.2885(6)	4.7993(6)	4.5349(21)	11.91(2)	-6.17(5)
1000	2.8598(4)	3.2679(4)	3.0543(16)	14.27(2)	-7.47(5)
1250	2.0714(3)	2.4017(4)	2.2263(13)	15.95(2)	-8.47(6)
1500	1.5865(2)	1.8615(3)	1.7095(11)	17.33(2)	-9.58(7)
				δ_{ISR}	δ^{NL}_{WW}

W. Płaczek

CONCLUSIONS

• Our Solution for WW Physics:

Two MC Event Generators

(Weighted/Unweighted Events)

WW Signal 4f Background

- Good Agreement With RACOONWW (< 0.5%) and LEP2 Data
- $\mathcal{O}(\alpha)$ Non-LL EW Radiative Corrections: 1% — 2% at LEP2

Up to 10% at LC (Higer Orders Needed!)

• ISR Corrections Change:

From Large Negative at LEP2

To Large Positive at LC (Partial Cancellation With EWC)

To Be Done

- $\mathcal{O}(\alpha)$ YFS Exponentiation In W Decays (In Progress)
- Non-Factorizable Corrections
- Tests, ...