Title/Outline

On Photonic Observables in $W\mbox{-}\operatorname{Pair}$ Production

WIESŁAW PŁACZEK Institute of Computer Science Jagiellonian Univesity, Cracow, Poland

Outline:

- Introduction.
- Differences in Photonic Distributions between YFSWW and RacoonWW.
- Non-leading EW Corrections to Photon Observables in YFSWW.
- Conclusions.

W. Płaczek

People:	
S. JADACH, W. PŁACZEK, M. SKRZYPEK, B.F.L. WARD, Z. WĄS	
Programs	Papers
KoralW:	Comput. Phys. Commun. 94 (1996) 215
	Phys. Lett. B372 (1996) 289;
	Comput. Phys. Commun. 119 (1999) 272
	Comput. Phys. Commun. 125 (2000) 8
	Comput. Phys. Commun. 140 (2001) 475
YFSWW3:	Phys. Rev. D54 (1996) 5434
	Phys. Lett. B417 (1998) 326
	Phys. Rev. D61 (2000) 113010
	Comput. Phys. Commun. 140 (2001) 432
	Phys. Lett. B523 (2001) 117
	CERN-TH/2000-337, hep-ph/0007012
	ightarrow submitted to Phys. Rev. D
	CERN-TH/2001-274, January 2002
	\rightarrow to be submitted to Phys. Lett. B
ightarrow Programs a	vailable at:
ht	tp://cern.ch/placzek

Standard Perturbative Approach:

Order	Loops/Real-Photons
${\cal O}(lpha^0)$	0/0
$\mathcal{O}(lpha^1)$	1/0 + 0/1
${\cal O}(lpha^2)$	2/0 + 1/1 + 0/2

 $\Rightarrow \operatorname{At} \mathcal{O}(\alpha^{1}) \text{ Only Tree-level Single-Photon Observables}$ $\Rightarrow \operatorname{Radiative Corrections to Single-Photon Observables}$ appear at $\mathcal{O}(\alpha^{2})$ and h.o.

RacoonWW (A. Denner et al.):

- Main Event Generation Mode:
 - \rightarrow Single-Photon Observables at Tree Level
- Special (dedicated) 1 γ Mode:
 - \rightarrow Single-Photon Observables with $\mathcal{O}(\alpha^3)$ LL ISR Corrections (through QED Structure Functions)

W. Płaczek

Exclusive Yennie-Frautschi-Suura Exponentiation:

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=1}^{4} \frac{d^{3}q_{j}}{q_{j}^{0}} \left\{ \prod_{i=1}^{n} \frac{d^{3}k_{i}}{k_{i}^{0}} \tilde{S}(\{p\}, \{q\}, k_{i}) \Theta\left(\frac{2k_{i}^{0}}{\sqrt{s}} - \epsilon\right) \right\}$$
$$\times \delta^{(4)} \left(p_{1} + p_{2} - \sum_{j=1}^{4} q_{i} - \sum_{j=1}^{n} k_{i} \right) e^{Y(\{p\}, \{q\}; \epsilon)}$$
$$\times \left[\bar{\beta}_{0}^{(m)}(\{p\}, \{q\}) + \sum_{i=1}^{n} \frac{\bar{\beta}_{1}^{(m)}(\{p\}, \{q\}, k_{i})}{\tilde{S}(\{p\}, \{q\}, k_{i})} + \dots \right],$$

where

$$\begin{split} \tilde{S}(\{p\},\{q\},k) &- \text{Soft-Photon Radiation Factor} \\ Y(\{p\},\{q\};\epsilon) &- \text{YFS Infrared (IR) FormFactor} \\ \bar{\beta}_n^{(m)}(\ldots) &- \mathcal{O}(\alpha^m) \text{ Non-IR YFS Residuals for n Real Photons} \end{split}$$

- Each Event with Infinite Number of Radiative Photons (most integrated over)
- Correct IR limit
- Perturbative Non-IR Corrections included Multiplicatively: For Any Number of Photons (Exact in Soft-Photon Limit)
- \Rightarrow Single-Photon Observables in YFSWW:
- * $\mathcal{O}(\alpha^2)$ LL ISR Corrections
- * Approximate $\mathcal{O}(lpha^1)$ Non-Leading (NL) EW Corrections

W. Płaczek

