Title/Outline

On Theoretical Precision of W Mass and Triple-Gauge Couplings Measurement at LEP2

WIESŁAW PŁACZEK Institute of Computer Science Jagiellonian University, Kraków, Poland

Outline:

- Introduction.
- Theoretical Precision of W Mass measurement.
 - → S. Jadach, W.P., M. Skrzypek, B.F.L. Ward, Z. Was, hep-ph/0109072, Phys. Lett. B, in press.
- Theoretical Precision of Triple-Gauge Couplings (TGC) measurement.
 - → R. Brunelière, A. Denner, S. Dittmaier, S. Jadach, S. Jézéquel, W.P., M. Roth, M. Skrzypek, D. Wackeroth, B.F.L. Ward, Z. Was, CERN-TH/2001-274, to be submitted to Phys. Lett B.

W. Płaczek

Introduction

Introduction

W. Płaczek

Introduction

W. Płaczek

W Mass measurement

W. Płaczek

- M_W at LEP2 measured by direct fit to W invariant mass distribution:
 Level-1: Constrained kinematic fit ⇒ two W invariant masses + auxiliary parameters (controlling the detector energy resolution, etc.)
 Level-2: Actual M_W fit using MC Event Generator (ALEPH, L3, OPAL) or analytical function (DELPHI)
- Final LEP2 Experimental Precision: $\Delta M_{\mathbf{W}} \simeq \mathbf{30} \; \mathsf{MeV}$
- $\bullet\,$ Theoretical Untertainty (TU) should be: $\ \leq 15\,(10)$ MeV
- Missing detailed study on TU of M_W (before this work) \Rightarrow TU of M_W is almost completely independent of TU on σ_{WW} (studied in detail during 2000 LEP2 MC Workshop, cf. Yellow Report CERN 2000-009)

Assumptions:

- Semileptonic process: $e^+e^- \rightarrow W^+W^- \rightarrow u \bar{d} \mu^- \bar{\nu}_{\mu}$
- Parton level with simplified cuts/acceptances
- $\bullet\,$ One-dimensional fit of a single W invariant mass
- Mass of $\mathbf{W}^-
 ightarrow \mu^- \overline{
 u}_\mu$ considered
- Invariant mass distributions from MCs: YFSWW3-KoralW (Jadach et al.) and RacoonWW (Denner et al.)
- Fitting function (FF) from semi-analytical program KorWan (Jadach et al.)

Notation:

Born – Born level

ISR – $\mathcal{O}(\alpha^3)$ LL YFS exponentiation for ISR and Coulomb correction

- INF the above plus non-factorizable corrections (NF) in the inclusive approx. of Chapovsky & Khoze ("screened" Coulomb ansatz)
- Best best predictions from YFSWW3, i.e. all the above plus the $\mathcal{O}(\alpha^1)$ EW

non-leading (NL) corrections (Fleischer et al.)

W. Płaczek

- The fitted $M_{\mathbf{W}}$ exactly agrees with the input $M_{\mathbf{W}}$ in the case when the same effects are included both in FF and the MC.
- $\bullet\,$ If one is interested only in the shift of $M_{\mathbf{W}},$ then any FF can be used.
- The size of the ISR effect is about -10 MeV, that of the INF about +5 MeV, and the size of the NL corrections ~ 1 MeV (negligible!).

W. Płaczek

9

Effects of 4f background on $M_{\mathbf{W}}$:

W. Płaczek

- The comparison of YFSWW3 with RacoonWW is very interesting because the two calculations differ in almost every aspect of the implementation of the ISR, FSR, NL and NF corrections.
- The results of YFSWW3 and RacoonWW differ, in terms of the fitted mass, by only $\lesssim 3$ MeV, slightly more for CALO5 than for CALO25.

W. Płaczek

 \bullet Linearized $M_{\mathbf{W}}$ Shift due to Correction Function $f(\mathbf{M^2})$:

$$\frac{d\sigma}{dM} \simeq |\mathbf{BW}(\mathbf{M})|^2 \times \mathbf{f}(\mathbf{M}^2) \Rightarrow \Delta \mathbf{M}_{\mathbf{W}} \simeq \frac{1}{8} \Gamma_{\mathbf{W}}^2 \frac{\partial \ln \mathbf{f}(\mathbf{M}^2)}{\partial \mathbf{M}} \bigg|_{\mathbf{M} = \mathbf{M}_{\mathbf{W}}}$$

Main Effects:

a)
$$\Delta_{ISR} M_W \simeq -\Gamma_W \frac{\Gamma_W M_W}{2s\beta_W^2} \times 4\frac{\alpha}{\pi} \ln(s/m_e^2) \simeq -6$$
 MeV
b) $\Delta_{FSR} M_W \simeq -\Gamma_W \frac{\pi}{8} \frac{\alpha}{\pi} \ln(M_W^2/M_{rec}^{\gamma f}) \simeq -8$ MeV for CALO5
c) $\Delta_{INF} M_W \simeq -\Gamma_W \frac{\alpha}{4} \frac{(1-\beta_W)^2}{\beta_W} \simeq -1$ MeV
Note: $\Delta_{Coul.} M_W \simeq -\Gamma_W \frac{\alpha}{4} \frac{1}{\beta_W} \simeq -6$ MeV
 $\Rightarrow \Delta_{INF} M_W - \Delta_{Coul.} M_W \simeq 5$ MeV (cf. Figs)

In Agreement with Fit results

Semi-quntitative estimates of $\Delta M_{\mathbf{W}}$

Estimation of the missing effects in the K-Y MC tandem:					
ΔM_W					
Error Type	Scale Param. $\Delta M_W = \Gamma \times \epsilon$	Numerical cross-check	ΔM_W		
WW production					
ISR $\mathcal{O}(\alpha^4 L_e^4)$	$\epsilon \simeq \frac{\Gamma_W M_W}{s\beta_W^2} (\frac{\alpha}{\pi})^4 L_e^4 \sim 5 \cdot 10^{-6} [\mathcal{O}(\alpha^3 L_e^3) - \mathcal{O}(\alpha^2 L_e^2)]_{\text{KoralW}}$		$\ll 1 \text{ MeV}$		
ISR $\mathcal{O}(\alpha^2 L_e)$	$\epsilon \simeq \frac{\Gamma_W M_W}{s \beta_W^2} (\frac{\alpha}{\pi})^2 L_e \sim 5 \cdot 10^{-6}$	KorWan	$\ll 1~{\rm MeV}$		
ISR $\mathcal{O}(\alpha^2)_{pairs}$	$\epsilon \simeq \frac{\Gamma_W M_W}{s \beta_W^2} (\frac{\alpha}{\pi})^2 L_e^2 \sim 4 \cdot 10^{-4}$	KorWan	$< 1 { m MeV}$		
W decay					
FSR $\mathcal{O}(\alpha)_{miss.}$	$\epsilon \simeq 0.2 \left(\frac{\pi}{8} \frac{\alpha}{\pi} 2 \ln \frac{M_W}{p_T} \right) \sim 10^{-3}$	Basic tests of PHOTOS	$\sim 2 { m MeV}$		
FSR $\mathcal{O}(\alpha^2)_{miss.}$	$\epsilon \simeq \frac{1}{2} \left(\frac{\pi}{8} \frac{\alpha}{\pi} 2 \ln \frac{M_W}{p_T} \right)^2 \sim 10^{-5}$	On/off 2γ in PHOTOS	$\ll 1~{\rm MeV}$		
Non-factorizable QED interferences (between production and 2 decays)					
$\mathcal{O}(\alpha^1)_{miss.}$	$\epsilon \simeq 0.1 \left(\frac{\alpha}{4} \frac{(1-\beta)^2}{\beta}\right) \sim 10^{-4}$	Chapovsky & Khoze	$< 2 { m MeV}$		
$\mathcal{O}(lpha^2)$	$\epsilon \simeq \frac{1}{2} \left(\frac{\alpha^2}{4} \frac{(1-\beta)^2}{\beta} \right)^2 \sim 10^{-7}$	None	$\ll 1~{\rm MeV}$		
$ullet$ TU due to LPA: $\Delta M_{\mathbf{W}} = 1$ MeV (LPA options in YFSWW3)					

• The Electroweak Theoretical Uncertainty in M_W of the KoralW-YFSWW3 MC tandem at LEP2 energies is $\fbox{5\,MeV}$

(< 10 MeV – targeted TU for LEP2)

- The above conclusion is strengthened by the smallness of the differences between YFSWW3 and RacoonWW (≤ 3 MeV).
 We attribute it to the standard *factorizable* corrections (ISR, FSR, etc.) and purely technical/numerical effects.
- In the above estimate we included a "safety factor" of 2, corresponding to the fact that our fits of M_W were done for 1-dimensional effective W mass distributions.

In order to eliminate it, our analysis should be repeated for the realistic measurements of the LEP2 experiments.

Triple-Gauge Couplings measurement

W. Płaczek

Anomalous Triple-Gauge Couplings

Effective Lagrangian With Anomalous WWV, (V = γ , Z) Couplings: [K. Hagiwara et al., Nucl. Phys. B282 (1987) 253] $\mathcal{L}_{\rm WWV}/g_{\rm WWV} = ig_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu}$ $+\frac{\imath\lambda_{V}}{M_{W}^{2}}W_{\rho\mu}^{\dagger}W^{\mu}{}_{\nu}V^{\nu\rho}-g_{4}^{V}W_{\mu}^{\dagger}W_{\nu}\left(\partial^{\mu}V^{\nu}+\partial^{\nu}V^{\mu}\right)$ $+g_5^V \epsilon^{\mu\nu\rho\sigma} (W^{\dagger}_{\mu} \overleftrightarrow{\partial_{\rho}} W_{\nu}) V_{\sigma} + i \tilde{\kappa}_V W^{\dagger}_{\mu} W_{\nu} \tilde{V}^{\mu\nu} + \frac{i \tilde{\lambda}_V}{M_{\nu}^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\ \nu} \tilde{V}^{\nu\rho}$ where: $A_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad \tilde{A}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}A^{\rho\sigma},$ $g_{WW\gamma} = -e, \quad g_{WWZ} = -e \cot \theta_W.$ \Rightarrow Anomalous Electric Charge of W: $|q_{\mathrm{W}}| = eq_{1}^{\gamma}$ \Rightarrow Anomalous Magnetic Moment of W: $\mu_{\rm W} = \frac{e}{2M_{\rm W}} (1 + \kappa_{\gamma} + \lambda_{\gamma})$ \Rightarrow Anomalous Electric Quadrupole Moment of W: $Q_{\rm W} = -\frac{e}{M_{\rm w}^2} (\kappa_{\gamma} - \lambda_{\gamma})$

W. Płaczek

Anomalous Triple-Gauge Couplings

- Standard Model: $g_1^V = \kappa_V = 1$, $\lambda_V = g_4^V = g_5^V = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$.
- In general: $g_1^V, \kappa_V, \lambda_V, g_4^V, g_5^V, \tilde{\kappa}_V, \tilde{\lambda}_V \in \mathbb{C}$, and depend on $(s/\Lambda^2)^n$, where Λ – scale of New Physics.

Thus, measurement of Anomalous TGC \Rightarrow scale of New Physics

Our aim:

Project TU of $\cos\theta_{\mathbf{W}}$ distribution into TU of Anomalous TGC

- 14 Complex-number Couplings too many Parameters!
- \rightarrow Usually investigated only Three C and P Conserving Anomalous Couplings:

$$\Delta g_1^Z, \ \Delta \kappa_\gamma, \ \lambda = \lambda_\gamma = \lambda_Z \ \in \mathbb{R}$$

 \Rightarrow Measured at LEP2 using 5 observables: $\cos \theta_{\mathbf{W}}, \cos \theta_{\mathbf{l}}^*, \phi_{\mathbf{l}}^*, \cos \theta_{\mathbf{jet}}^*, \phi_{\mathbf{jet}}^*$

- * λ sensitive mainly to $\cos heta_{\mathbf{W}} ~(\sim 70\%)$
- $* \Delta g_1^Z, \, \Delta \kappa_\gamma$ sensitive to all observables!

We consider only λ

17

Fitting of λ

Monte Carlo Parametric Fit (MPF):

Instead of using semi-analytical formula of (with limited choice of cuts) we parametrize normalized Monte Carlo distribution (with any cuts) $D(\cos \theta_W, \lambda) = (1/\sigma)(d\sigma/d\cos \theta_W)$ as a function of $\cos \theta_W$ and λ . \rightarrow We use the following 9-parameter fitting function (MPFF):

$$\rho(\cos\theta_W,\lambda) = \frac{D(\cos\theta_W,\lambda)}{D(\cos\theta_W,0)} = \sum_{i=0}^2 \left(a_i \lambda^i + b_i \lambda^i \cos\theta_W + c_i \lambda^i \cos^2\theta_W \right)$$

(ho is a very smooth function of $\cos \theta_W$ and λ at LEP2 energies)

 a_i, b_i, c_i are determined by fitting ho distributions obtained from YFSWW or RacoonWW for three values of $\lambda = -0.2, 0, 0.2$.

We checked that the constructed MPFFs reproduce the input values of λ within the fit error of ~ 0.001 .

 \Rightarrow We project changes in $\cos\theta_{\mathbf{W}}$ distribution due to various EW corrections into shifts of λ

• Final LEP2 Experimental Precision: $\delta_{exp}\lambda \simeq 0.01$

W. Płaczek

Fitting of λ

$$\mathbf{e}^+ \mathbf{e}^- \longrightarrow \mathbf{W}^+ \mathbf{W}^- \longrightarrow \mathbf{u} \mathbf{d} \mu^- \overline{\nu}_\mu$$

Shifts of λ from fits to $\cos\theta_{\mathbf{W}^-}$ (Y=YFSWW, R=RacoonWW)

Fitting procedure		Fitted data			
Fitting function	Accept.	Y: Best-ISR	R: Best-ISR	Best: R-Y	Accept.
1. KorWan	BARE	0.0114(6)		—	CALO5
2. KorWan	BARE	0.0115(6)	_	_	CALO25
3. MPF: Y-ISR	CALO5	0.0112(7)	0.0097(8)	0.0008(9)	CALO5
4. MPF: Y-ISR	CALO5	0.0115(7)	0.0161(8)	0.0008(9)	CALO25
5. MPF: R-ISR	CALO5	0.0112(7)	0.0097(8)	0.0008(9)	CALO5
6. MPF: R-ISR	CALO5	0.0115(7)	0.0161(8)	0.0008(10)	CALO25
7. MPF: Y-Best	CALO5	0.0113(7)	0.0098(8)	0.0008(10)	CALO5
8. MPF: Y-Best	CALO5	0.0116(7)	0.0162(8)	0.0008(9)	CALO25
9. MPF: R-Best	CALO5	0.0110(7)	0.0096(8)	0.0007(9)	CALO5
10. MPF: R-Best	CALO5	0.0113(7)	0.0158(8)	0.0008(9)	CALO25
11. MPF: KoralW	ALEPH	0.0118(7)	0.0103(9)	0.0008(10)	CALO5
12. MPF: KoralW	ALEPH	$0.0122\left(7 ight)$	0.0172(9)	0.0009(10)	CALO25

Final LEP2 Experimental Precision: $\delta_{exp}\lambda\simeq 0.01$

W. Płaczek

Fitting of λ

$\Delta\lambda$ from Various Effects

YFSWW

RacoonWW

Effect	Acceptance	$\Delta\lambda$	Effect	Acceptance	Δλ
1. Best – ISR	$BARE_{4\pi}$	0.0108(7)		CALO5	0.0096(8)
	$CALO5_{4\pi}$	0.0110(7)	1. Best – ISR	CALO25	0.0158(8)
2. ISR $_3 - ISR_2$	$BARE_{4\pi}$	0.0001(2)			0.00100(0)
	$CALO5_{4\pi}$	0.0001(2)	2. Off-shell Coulomb effect	CALUS	0.0001(10)
3. FSR $_2 - FSR_1$	$BARE_{4\pi}$	0.0001(3)		CALO25	0.0001 (10)
	$CALO5_{4\pi}$	0.0001(3)	$2 \int f$ background corr (Porp)	CALO5	0.0029(10)
4. $4f$ -background corr. (Born)	CALO5	0.0021(3)		CALO25	0.0029(10)
	CALO25	0.0021(3)		CALO5	0.0008(10)
5. $4f$ -background corr. (with ISR)	CALO5	0.0005(3)	4. $4f$ -background corr. (with ISR)	CALO25	0.0008(10)
	CALO25	0.0005(3)		CAL O5	0.0003(10)
6. EWC-scheme: $(B) - (A)$	CALO5	0.0006(9)	5. On-shell projection		0.0000(10)
	CALO25	0.0006(9)		CALO25	0.0003(10)
7. LPA $_b$ – LPA $_a$	CALO5	0.0017 (9)	6 DPA definition	CALO5	0.0005(10)
	CALO25	0.0018 (9)		CALO25	0.0005(10)

Deviations from "Best" predictions $\lesssim 0.002$

Other-Channel MPFFs fitted to MC Data for Channel $u \bar{d} \mu^- \bar{\nu}_\mu$

(TRUE – Parton level, RECO – Full ALEPH Detector Reconstruction)

ALEPH fitting function		Fitted data				
Channel	Acceptance	Y: Best–ISR	R: Best-ISR	Best: R-Y	Acceptance	
$\mu\nu_{\mu}aa$	TRUE	0.0118(7)	0.0102(9)	0.0008(10)	CALO5	
		0.0121(7)	0.0170(9)	0.0009(10)	CALO25	
	RECO	0.0118(7)	0.0103(9)	0.0008(10)	CALO5	
		0.0122(7)	0.0172(9)	0.0009(10)	CALO25	
	TRUE	0.0119(7)	0.0103(9)	0.0008(10)	CALO5	
$e u_e qq$		0.0122(7)	0.0172(9)	0.0009(10)	CALO25	
	RECO	0.0119(7)	0.0103(9)	0.0008(10)	CALO5	
		0.0123(7)	0.0172(9)	0.0009(10)	CALO25	
	TRUE	0.0115(7)	0.0100(8)	0.0008(10)	CALO5	
$ au u_{ au} q q$		0.0118(7)	0.0166(8)	0.0009(10)	CALO25	
	RECO	0.0107(6)	0.0091(8)	0.0007(9)	CALO5	
		0.0109(6)	0.0152(8)	0.0008(9)	CALO25	
qqqq	TRUE	0.0118(7)	0.0102(9)	0.0008(10)	CALO5	
		0.0120(7)	0.0169(9)	0.0009(10)	CALO25	
	RECO	$0.0094(\overline{6})$	$0.0081(\overline{7})$	0.0007(8)	CALO5	
	RECO	0.0096(6)	0.0132(7)	0.0008(8)	CALO25	

 \rightarrow For channels $\tau \nu_{\tau} qq$ and qqqq Detector Effects (jet resolution, jet pairing, jet charge

and τ reconstruction, etc.) imposed on MC data through Transfer Matrices

- The Non-Leading EW Corrections shift λ by 0.01–0.02, which is comparable to the combined Experimental LEP2 Accuracy.
 ⇒ They Have to be Taken into Account in Experimental Analyses!
- The Electroweak Theoretical Uncertainty in $\lambda = \lambda_{\gamma} = \lambda_{Z}$ of the MC tandem KoralW&YFSWW3 and of the MC RacoonWW at LEP2 energies is estimated to be ~ 0.005 , which is $\sim 1/2$ of the expected combined Experimental Error on λ at LEP2.
- We used a safety factor of 2 to account for the $\sim 30\%$ sensitivity loss due to the single-distribution fit and for possible higher order effects missing in both programs.