Title/Outline

W and Z Pair Production In Electron-Positron Collisions

WIESŁAW PŁACZEK Institute of Computer Science Jagiellonian Univesity, Cracow, Poland

Outline:

- Introduction.
- Some results from LEP2.
- WW Physics with YFSWW/KoralW.
- ZZ Physics with YFSZZ/KoralW.
- Conclusions and outlook.

W. Płaczek

- To measure the Standard Model parameters, e.g. M_W , Γ_W \rightarrow Before LEP2 (1995): $\Delta M_W \approx 160$ MeV, while: $\Delta M_Z \approx 2$ MeV
- To test the Standard Model, e.g. Triple-Gauge Couplings (TGC): $WW\gamma$ and WWZ<u>Note:</u> For the first time at the Born level in e^+e^- collisions
- To get better constraints on the Higgs mass
 → Indirectly from other SM parameters
- To search for "new physics", e.g. anomalous TGCs, etc.
- WW and ZZ processes important background for **Higgs boson** searches.

Introduction

W. Płaczek

Some results from LEP2

Jagiellonian University

W. Płaczek

 $M_W[GeV]$

W. Płaczek

Some results from LEP2

W. Płaczek

Some results from LEP2

W. Płaczek

Jagiellonian University

7

People:

S. JADACH, W. PŁACZEK, M. SKRZYPEK, B.F.L. WARD, Z. WĄS

MC Programs Papers

 KoralW:
 Comput. Phys. Commun. 94 (1996) 215

 Phys. Lett. B372 (1996) 289;
 Comput. Phys. Commun. 119 (1999) 272

Comput. Phys. Commun. 125 (2000) 8

Comput. Phys. Commun. 140 (2001) 475

YFSWW3: Phys. Rev. **D54** (1996) 5434

Phys. Lett. B417 (1998) 326

Phys. Rev. D61 (2000) 113010

Comput. Phys. Commun. 140 (2001) 432

CERN-TH/2000-337, hep-ph/0007012

ightarrow submitted to Phys. Rev. **D**

YFSZZ: Phys. Rev. **D56** (1997) 6939

ightarrow Programs available at:

http://cern.ch/placzek

W. Płaczek

 \Rightarrow **EXPERIMENTALLY**:

W-pairs observed through 4f final states + radiative photons

• GENERAL PROCESS:

$$e^+ + e^- \longrightarrow f_1 + \bar{f}_2 + f_3 + \bar{f}_4 + n\gamma, \ (n = 0, 1, \ldots)$$

 \Rightarrow THEORETICALLY: also LOOP corrections necessary!

• Exclusive Yennie-Frautschi-Suura Exponentiation:

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=1}^{4} \frac{d^{3}q_{j}}{q_{j}^{0}} \left\{ \prod_{i=1}^{n} \frac{d^{3}k_{i}}{k_{i}^{0}} \tilde{S}(\{p\}, \{q\}, k_{i}) \Theta\left(\frac{2k_{i}^{0}}{\sqrt{s}} - \epsilon\right) \right\}$$
$$\times \delta^{(4)} \left(p_{1} + p_{2} - \sum_{j=1}^{4} q_{i} - \sum_{j=1}^{n} k_{i} \right) e^{Y(\{p\}, \{q\}; \epsilon)}$$
$$\times \left[\bar{\beta}_{0}^{(m)}(\{p\}, \{q\}) + \sum_{i=1}^{n} \frac{\bar{\beta}_{1}^{(m)}(\{p\}, \{q\}, k_{i})}{\tilde{S}(\{p\}, \{q\}, k_{i})} + \dots \right],$$

where

 $\tilde{S}(\{p\}, \{q\}, k)$ — Soft-Photon Radiation Factor $Y(\{p\}, \{q\}; \epsilon)$ — YFS FormFactor $\bar{\beta}_n^{(m)}(\ldots)$ — $\mathcal{O}(\alpha^m)$ YFS Residuals for n Real Photons **EW Loop Corrections enter through** $\bar{\beta}$ -functions.

W. Płaczek

Monte Carlo Event Generator !

\Rightarrow **PROBLEMS**:

- CC03 set of Feynman diagrams Not Gauge-Invariant; At least CC11 needed for Gauge Invariance \rightarrow In practice, full $e^+e^- \rightarrow 4f$ process to be considered
- $\sim 80~{\rm different}~4f~{\rm channels}$
- Complicated Peaking behaviour in 8 + 3n dim. Phase Space
- Large number of Feyman diagrams

of Feynman graphs/channel (WW-type, $m_f = 0$)

BORN 9 — 56

1-LOOP 3,579 — 15,948

 $\bullet\,$ Problem of including Finite W boson Width in 4f processes in Gauge-Invariant way

 \rightarrow Practical solution – Complex-Mass Scheme:

$$M_V^2 \longrightarrow \tilde{M}_V^2 = M_V^2 + iM_V\Gamma_V$$

$$\sin^2 \theta_W \longrightarrow \sin^2 \tilde{\theta}_W = 1 - \frac{M_W^2}{\tilde{M}_Z^2}$$

Jagiellonian University

W. Płaczek

Problems: * Also Space-like propagators aguire Width (Non-Physical) * CP structure of process may be Changed (Complex Couplings) → Computing Problems – a few examples: • BORN: e.g. KoralW ($m_f \neq 0$) Source code: \sim 0.5M Lines \rightarrow \sim 20MB **Exec. code:** \sim 10MB **Compilation time:** \sim 0.5h on fast PC 1-LOOP: Rough estimate – mupltiply by 100 **Source code:** \sim 50M Lines $\rightarrow \sim$ 2GB **Exec. code:** \sim 1GB Compilation time: \sim 50h on fast PC ightarrow Very Slow event generation! ightarrow 100 imes Born **EFFICIENT APPROXIMATIONS NEEDED !**

W. Płaczek

• Two independent, efficient MC Presamplers for general 4f Phase Space

 \rightarrow Multibranch MC Algorithms (~ 50 Main Branches)

- Two dedicated MC Presamplers for W-Pair and Z-Pair Production and Decay
- YFS MC Algorithm for Arbitrary number of ISR Photons (wiht Non-Zero p_T)
- Fully-Massive 4f Born Matrix Element generated with GRACE System, MINAMI-TATEYA Collaboration,

J .Fujimoto et al.

(\rightarrow It can be easily replaced by any other M.E. – due to modularity of KoralW)

W. Płaczek

$\mathsf{YFSWW3} \leftrightarrow \mathsf{KoralW}$

(CC09/CC10/CC11 channels)

$\sqrt{s} = 161 \text{ GeV}$		$\sigma_{WW}[fb]$		δ_{4f} [%]		δNL [0%]
Final state	Program	Born	ISR	Born	ISR	O_{WW} [70]
	YFSWW3	156.670(16)	122.832(08)			-1.41(4)
$u \bar{d} \mu^- \bar{ u}_\mu$	KoralW	156.601(24)	122.836(11)	0.29	0.25	
	(Y-K)/Y	0.04(2)%	0.00(1)%			

$\sqrt{s} = 200 \mathrm{GeV}$		σ_{WW}	$_{W}\left[fb ight] = \delta_{4f}\left[\% ight]$		[%]	δNL [07]
Final state	Program	Born	ISR	Born	ISR	$O_{WW}[70]$
	YFSWW3	219.793(16)	204.198(09)		—	-1.92(4)
$ u_{\mu}\mu^{+}\tau^{-}\bar{\nu}_{\tau} $	KoralW	219.766(26)	204.178(21)	0.041	0.044	
	(Y-K)/Y	0.01(1)%	0.01(1)%		—	
	YFSWW3	659.69(5)	$635.81\left(3\right)$			-1.99(4)
$u \bar{d} \mu^- \bar{ u}_\mu$	KoralW	659.59(8)	635.69(7)	0.073	0.073	
	(Y-K)/Y	0.02(1)%	0.02(1)%	—	—	
	YFSWW3	1978.37(14)	1978.00(09)		—	-2.06(4)
$u \bar{d} s \bar{c}$	KoralW	1977.89(25)	1977.64(21)	0.060	0.061	
	(Y-K)/Y	0.02(1)%	0.02(1)%]		

$\sqrt{s} = 500 { m GeV}$		$\sigma_{WW} [fb]$		δ_{4f} [%]		δNL [07]
Final state	Program	Born	ISR	Born	ISR	$O_{WW}[70]$
	YFSWW3	261.368(23)	292.029(18)			-4.95(4)
$u \bar{d} \mu^- \bar{ u}_\mu$	KoralW	261.348(17)	291.979(19)	-0.51	-0.51	
	(Y-K)/Y	0.01~(1)%	0.02(1)%		—	—

 δ^{NL}_{WW} much bigger than δ_{4f} !

W. Płaczek

YFSWW3 ↔ RACOONWW ^{A. Denner, S. Dittmaier,} M. Roth, D. Wackeroth @ LEP2 Energies

$\sqrt{s}[GeV]$	σ_{WV}	(<mark>Y — R</mark>)/ <mark>Y</mark> [%]	
	YFSWW3	RACOONWW	
168.000	9.8342(29)	9.8392(49)	-0.05(6)
172.086	12.0982(34)	12.0896(76)	0.08(7)
176.000	13.6360(45)	13.6271(66)	0.07(6)
180.000	14.7790(42)	14.7585(72)	0.14(6)
182.655	15.3584(43)	$15.3684\left(76 ight)$	-0.07(6)
185.000	15.7691(46)	15.7716(78)	-0.02(6)
188.628	$16.2578\left(47 ight)$	$16.2486\left(111 ight)$	0.06(8)
191.583	$16.5523\left(47 ight)$	16.5188(85)	0.21(6)
195.519	16.8282(49)	16.8009(87)	0.16(6)
199.516	$17.0099\left(49 ight)$	16.9791(88)	0.18(6)
201.624	17.0643(51)	17.0316(89)	0.19(6)
205.000	17.1213(53)	17.0792(89)	0.24(6)
208.000	17.1361(53)	17.0942(90)	0.24(7)
210.000	17.1229(52)	17.0858(91)	0.20(7)
215.000	17.0651(54)	17.0378(91)	0.16(7)

Agreement within 0.3%

Jagiellonian University

W. Płaczek

YFSWW3: Total WW Cross Section

$\sqrt{c}[C_{e}V]$	$\sigma_{WW} [pb]$			ISR-Born [%]	Best-ISR [%]	
VS[Gev]	Born	ISR	Best	Born ^[70]	Born $[70]$	
155.000	0.94585(17)	0.76497(14)	0.75444(26)	-19.12(3)	-1.13(4)	
157.000	1.38578(25)	$1.10298\ (19)$	1.08636(42)	-20.41(3)	-1.21(4)	
159.000	2.30412(40)	$1.79141\left(30 ight)$	1.76197(69)	-22.25(3)	-1.28(4)	
161.000	4.4138(7)	3.3579(5)	3.2953(12)	-23.92(3)	-1.43(5)	
163.000	7.3264(10)	5.6178(7)	5.5198(18)	-23.32(3)	-1.35(4)	
165.000	9.7343(11)	7.6385(9)	7.5059(23)	-21.53(3)	-1.37(4)	
167.000	11.5788(14)	9.2903(10)	9.1348(26)	-19.76(3)	-1.35(4)	
168.000	12.3391(14)	10.0020(11)	9.8342(29)	-18.94(3)	-1.35(4)	
170.000	13.6124(15)	11.2392(12)	11.0476(31)	-17.43(3)	-1.42(4)	
172.086	14.6717(16)	12.3114(14)	12.0982(34)	-16.09(3)	-1.45(4)	
176.000	16.1293(17)	$13.8760\ (15)$	$13.6360\left(38 ight)$	-13.97(3)	-1.49(4)	
180.000	17.1207(18)	15.0325(16)	14.7790(42)	-12.20(3)	-1.48(4)	
182.655	17.5852(19)	15.6190(17)	15.3584(43)	-11.18(3)	-1.49(4)	
185.000	17.8981(19)	16.0422(18)	15.7691(46)	-10.37(3)	-1.53(4)	
188.628	18.2391(20)	16.5540(18)	16.2578(47)	-9.24(3)	-1.63(4)	
191.583	18.4179(20)	16.8649(18)	16.5523(47)	-8.43(3)	-1.70(4)	
195.519	18.5466(19)	$17.1651\left(19 ight)$	16.8282(49)	-7.45(3)	-1.83(4)	
199.516	18.5828(19)	17.3608(19)	17.0099(49)	-6.58(3)	-1.89(4)	
201.624	18.5696(21)	17.4284(19)	17.0643(51)	-6.15(3)	-1.97(4)	
205.000	18.5162(21)	17.4968(20)	17.1213(53)	-5.51(3)	-2.03(4)	
208.000	18.4399(21)	17.5216(20)	17.1361(53)	-4.98(3)	-2.10(4)	
210.000	18.3767(21)	17.5219(20)	17.1229(52)	-4.65(2)	-2.18(4)	
215.000	18.1833(21)	17.4773(20)	17.0651(54)	-3.88(2)	-2.27(4)	
250	16.2477(16)	16.2293(14)	15.7730(55)	-0.11(2)	-2.81(4)	
350	11.3812(12)	11.9325(12)	11.5100(47)	4.84(2)	-3.71(4)	
500	7.3621(8)	7.9823(9)	7.6091(37)	8.42(2)	-5.07(4)	
750	4.2885(6)	4.7993(6)	4.5157(25)	11.91(2)	-6.61(5)	
1000	2.8598(4)	3.2679(4)	3.0375(20)	14.27(2)	-8.07(5)	
1250	2.0714(3)	2.4017(4)	2.2105(16)	$15.95\left(2\right)$	-9.23(6)	
1500	1.5865(2)	1.8615(3)	1.6992(14)	$17.33\left(2\right)$	-10.23(7)	
				δ_{ISR}	δ^{NL}_{WW}	
In TESLA TDR (2001)						

ZZ Physics with YFSZZ/KoralW

W. Płaczek

CONCLUSIONS – WW:

• Our Solution for WW Physics:

Two MC Event Generators

YFSWW3

WW Signal 4f Background

KoralW

- Works from WW Threshold to LC Energies
- Combination on Event-by-Event basis possible:
 - * by Reweighting generated events
 - * through Unix FIFO Pipes:

 \rightarrow Concurrent MC KoralW&YFSWW3

• Good Agreement with RACOONWW (< 0.3%) and LEP2 Data

& OUTLOOK – WW:

- $\mathcal{O}(\alpha)$ YFS Exponentiation in W Decays (in progress)
- Non-Factorizable Corrections
- Coherent Exclusive Exponentiation (CEEX) for *W*-Pair Production and Decay (Expon. on Spin-Amplitude level)
- Higer-order EW Corrections for LC (Sudakov logs, etc.)
- Beamstrahlung, Beam Polarization, ...

W. Płaczek

